
Duffin-Kemmer algebras revisited

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 4967

(http://iopscience.iop.org/0305-4470/26/19/027)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 19:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
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Duffin-Kemmer algebras revisited 
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t Cenho de Investigaci6n en Matematicas, Apartado Postal 402, Guawjuato 36000, MBxico 
$ Facultad de Ciencias Fisico-Matematicas, Universidad Michoacana. Morelia, M6xico 

Received 5 January 1993 

Abstract. Duffin-Kemmer algebras are studied from a modem perspective. Complete 
descriptions of these algebras and their simple modules are given in terms of tensor and exterior 
algebras. The approach is self-contained and no reference to gene& results on Jordan algebras 
and their representation~theory is required. Absolute defail is provided for the more specific 
examples of the Duffin-Kemmer real algebras D(q + 2, q )  (for q = 0, 1. and 2) which are 
relevant for applications in physics. A faithful representation of D(q + 2, q) is given in the 
space of real 29+[ x W1 matrices; it is completely reducible and yields with multiplicity one all 
the irreducible representations of D ( q f 2 , q ) .  The representation space has a naulral orthogonal 
structure. (., .)4. of signature (ZatL, 2af'), for q > 0, and (4,O). for q = 0. It corresponds 
to the bilinear form induced by the spin group, Spin(q + 2. q),  on the tensor product space, 
W(q + 2, q)  c3 W ( q  + 2. q ) ,  of two copies of the fundamental module of the Clifford algebra, 
C(q f 2 . q ) .  Explicit computations are made simple by establishing a one-to-one correspondence 
with the space of 29 x 29 matrices with quaternion coefficients. 

1. Introduction 

Duffin-Kemmer (DK) algebras have been known since the late 1930s. In [I] Duffin gave 
the formal dgebraic properties that define a particular algebra, D(3,  I), associated with 
the Lorentz group, O(3, 1); he claimed that there were three irreducible representations 
of it occurring in dimensions one, five and ten, respectively. Kemmer studied these 
representations in more detail [6], and a few years later [7], generalized the algebraic 
relations of Duffin, thus giving rise to the DK aigebra, D(n ,C) ,  associated with the 
orthogonal group, O(n,  C). Using some properties of the hypergeometric function, Kemmer 
proved that D(n,  C) has dimension c","). Moreover, hk essentially proved that D(n,  C )  
is semisimple and gave a list of the dimensions of the simple modules. He recognized that 
the D(n, C )  irreducibles were l i e d  to representations of the Clifford algebra, C(n,  C), 
of O(n, C). Concrete examples. however, were only given for D(3, l), and D(4, C), 
with 10 x 10 and 5 x 5 matrices written down for the non-trivial simple representations. 
Different applications were given by Harish-Chandra [2], who used these representations 
to write Maxwell's equations in 'Dirac form' [31. More than 20 years later, Jacobson [5] 
recognized that Clifford, as well as DK algebras, could be respectively obtained as a unitury 
special universal envelope, and the unital universal multiplication envelope, of the Jordan 
algebra associated with a vector space V on which a symmetric bilinear form is defined. In 
this way, Jacobson was the one who finally elucidated the nature of the relationship between 
Clifford and DK algebras through his general theory of representations of Jordan algebras. 

/I Partially suppotted by: CONACYT grant no 3139.E9307 and MRLTA93. 
5 Current address: Instituto de Matemiticas; U", Ciudad Universikia, Mexico, DF 04510, Mexico. 
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The purpose of this paper is twofold. First, to review the theory of DK algebras from a 
modern point of view, giving a self-contained exposition in the manner in which one usually 
approaches the theory of Clifford algebras, i.e. independently of its known relationship to 
Jordan algebras. We shall be able to give a geometrically appealing description of their 
simple modules. This is done in general, starting from first principles, and using only 
elementary properties of the tensor and exterior algebras (section 2). Second, to study in 
more detail some specific examples which are relevant in physics, namely the real algebras 
D(q + 2, q)  (for q = 0, 1, and 2). and the geometric structure of their simple modules 
induced by the spin group, Spin(q + 2, q)  (section 4). In doing so, the signatures of some 
useful symmetric bilinear forms on the space of matrices are obtained (section 5). 

The results are as follows. Let V be a finite-dimensional vector space and let B be 
a non-degenerate symmetric bilinear form on V .  The DK algebra, D ( V ,  B ) ,  of the pair 
( V .  5) is the tensor algebra of V ,  modulo the ideal generated by the elements of the form, 
uuu - B(u,  u)u, with U, and U in V .  It is a finite-dimensional semisimple algebra. The 
simple modules of D ( V ,  B )  may be realized inside the exterior algebra, A ( V ) ,  of V :  if 
dimV = 2n, the subspaces Mk = A'(V) CB A ~ + ' ( V ) ,  with k = 0, 1, . . . , m, together 
with A"(V), g v e  the complete list of irreducibles. If dim V = 2m + 1, the list is given 
by A"+'(v), the M t s  for k = 0. 1, ..., m - 1, and the two eigenspaces of Hodge's 
star operator in M,. Furthermore, the extension of B to A ( V )  induces a non-degenerate 
symmetric bilinear form on each of  the irreducible DK modules. 

On the other hand, D ( V ,  B )  may be realized inside the tensor product of two copies 
of the Clifford algebra, C ( V ,  B ) ,  as the subalgebra generated by the elements of the form, 
i(1 @J U + U @J I), with ,U E V .  Therefore, each pair of representations of C ( V ,  B )  give a 
representation of D( V ,  5). In particular, we study the representations arising from the tensor 
product of two copies of the fundamental 2q+'-dimensional C(q+2, q)-module, W(qf2 ,  q )  
(q = 0, 1, and 2). This yields a faithful representation of D ( q f 2 ,  q )  in the space, R*q+'xz'tl, 

of real 2q+' x 2q+' matrices. This representation is completely reducible and yields, with 
multiplicity one, all the irreducible representations of D(q+2,q). The complete reducibility 
follows from geometrical reasons. In fact, Rzq has an orthogonal structure, (., .)q, 

induced by the spin group, Spin(q +2,q), in the tensor product W(q  +2, q )  @ W ( q  +2,q). 
It is given by 

tl ail 

(4.0) i f q = O  
(t, Oq = Tr(WJq<bq')? sgn(., .)4 = (8,8) i f q = 1  

(32,32) if q = 2 

22@+l, 
bq being an invertible matrix defined in a natural manner for each case (we have included 
the details in the appendix). In particular, the overall geometric structure induced in R 
is the same as the one induced in A(R2(q+')) by B. Furthennore, it is shown that for each 
generator a E D(q +2, q) ,  there is a scalar, .lo E R, such that, for all t, and r E R2qi'xzq+', 

{ 

This makes the orthogonal complements of the invariant subspaces, invariant. Another 
property of this representation is that it leaves the subspaces, Sz(Rz"") and A2(RZ"'), 
of symmetric and skew-symmetric matrices, respktively, invariant. For q = 0 they are 
both irreducible and exhaust the list of simple D(Z,O)-modules. For q = 1, only the 
subspace of symmetric matrices is irieducible. The skew-symmetric matrices split into the 
direct sum of the one-dimensional trivial moduldefined by the common intersection of 
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the kernels of (the operators that represent) the generators of D(3, 1)-and its orthogonal 
complement in A'@). Moreover, (., . )I  restricts to A2(R4) with signature (4, 2), and it is 
negative definite on the one-dimensional trivial submodule. Finally, for q = 2, both S2(R8) 
and A2(R8) are reducible. This time the trivial onedimensional submodule occurs inside 
S2(R8). Its orthogonal complement in S2(R8) is the 35-dimensional, simple module. The 
restriction of (., .)z to S2(Rs) has signature (16,ZO) and it is negative definite on the one- 
dimensional trivial submodule. On the other hand, A2(R8) splits into two simple modules 
of dimensions 7 and 21, and the form (., .)z restricrs to them with signatures (4,3), and 
(12,9), respectively. 

IS obtained from 
Spin(q + 2,q). First, there is a natural identification of W(q + 2, q) with C". In fact, 
C(q + 2, q) contains an element with square -1. %+3, uniquely and invariantly defined 
up to a sign. Therefore, in every non-trivial representation of C(q + 2, q), yzp+3 defines 
a complex structure on the corresponding representation module. This was observed in 
a previous work by one of us and Sternberg [SI, while studying the Clifford algebras 
C(q + 2, q) in connection with the connectivity properties of the spin groups and their 
relevance for conformal supersymmetry. Now, the spin group, Spin(q ,+ 2, q) endows 
W(q +2, q) N C" with a specific geometric structure, according to the following scheme: 

+I p+1 . Let .us briefly explain here how the orthogonal form on R2" 

U(1). i f q = O  
Spin@ + 2, q)# N S t ( 2 ,  C) if q = 1 . .  I SU(2,Z) " 1 f q = 2  

Spin(q + 2,q). being the identity component of Spin(q + 2.4). These structures induce 
specific geometries on the underlying real spaces W(q + 2, q) R"", according to 

SO(Z)-module i f q = O  . ;  
Sp(4, R)-module I*\ 0(4,4)-module 

The first case follows since U(1) 'v SO(2). For the second, SL(2 ,C)  N Sp(2,C) 
and both real and imaginary parts of a complex symplectic form define real symplectic 
structures on the underlying real space; thus, Sp(2, C) ~f Sp(4, R). Finally, either 
SU(2,Z) - O(4,4) or, SU(2.2) cf Sp(8, R), depending on whether the real or the 
imaginary part of the Hermitian structure (of signature (2,Z)) in W(4,Z) 'U C4, is used to 
define a real'bilinear form on W(4,Z) N R8. These two inclusions are physically relevant: 
SU(2,Z)  - Sp(8, R )  was used by Sternberg 191 to obtain a conformally invariant notion 
of charge conjugation, and SU(2,Z) ~f 0(4,4) is best when dealing with conformally 
invariant solutions of Maxwell's equations as suggested by Howe [4]. For us, and as far as 
the simple D(q + 2, q)-modules are concerned, the remarkable property is that the induced 
geometric structure on W(q + 2, q) @ W ( q  + 2, q) is unambiguous for the q = 2 case, 
regardless of whether W(4,Z) is taken with its 0(4,4), or with its Sp(8, R) structure. 
Whence 

Sp(8, R)-module 
or if q = 2. 

W(q + 2,q) = 

0(4)-mdule i f q = O  
O(8, Sl-module i f q = l  I 0(32,32)-moduIe if q = 2. 

W(q + 2, q) @R W(q + 2, q) 2: 

This follows from the way in which orthogonal and symplectic modules tensor with each 
other; the general result has been included in the appendix for reference. 
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2. Definition of the DK algebras 

Convention. We shall adhere to the convention that all algebras have unit element, and we 
shall denote the unit of the algebra by IA.  Moreover, a linear map, @:A + B, between two 
R-algebras is an algebra morphism only if the pair of conditions, @(alaz) = @(al)@(az) 
for all al, a2 in A and @(la) = 1s are satisfied. In particular, for any representation, 
p :  A + End U, we have, p(la) = idu. 

Let V be a finitedimensional vector space over the real or complex numbers, and let 
B be a non-degenerate, symmetric, bilinear form on V .  Let A be any associative algebra 
and let @: V + A be a linear map. We shall say that @ has the DK property (or that @ is a 
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DK map) if 

@(U)@(+#+) = U)@@) (14 

for all U, and U in V .  Equivalently, 

@(u)@(u)@(w) + @(v)@(u)@(u) = B(u, u)@(w)  + B(w, u)4 (~ ) .  0) 
Definition I .  A DK algebra for the pair (V ,  B )  is an associative algebra, D(V,  B ) ,  
equipped with a DK map I :  V --f D ( V ,  B )  with the following universal property: for any 
associative algebra A and any DK map @: V + A there exists a unique algebra morphism 
Q: D(V,  B )  + A such that 0 o I = @. 

Posed this way, a DK algebra for the pair ( V ,  B )  exists and is unique up to isomorphism. 
The uniqueness follows as in the solution to any universal problem. The existence is 
proved by setting D ( V ,  B )  equal to the tensor algebra of V ,  @ ( V ) ,  modulo the ideal, I, 
generated by the elements of the form U €3 U €3 U - B(u,  u)u. The DK map &: V + D(V, B )  
is the composition of the natural injection V % @ ( V )  followed by the projection 
@ ( V )  + @ ( V ) / I .  Moreover, L thus defined is injective and therefore V may (and 
shall) be identified with a subspace of D(V,  B).  The verification that these prescriptions 
yield the universal property of the definition above is straightforward; it will therefore be 
omitted. 

Proposition 2.  
(",") where n is the dimension of V .  

Proof. Since D ( V ,  B )  is a homomorphic image of @(V) ,  it inherits a &gradation. Let 
Dk(V,  B )  be @'(V) mod I. Thus, D(V, B )  = @k20DY((V,  B). Let [O} c . F o ( V ,  B )  c 
. . . Fk(V, B )  c F"'(V, B)  c . . ., be the filtration associated with the &gradation; i.e. 
Fk(V,  B )  = 

The algebra D ( V ,  B )  thus obtained is finite dimensional and dim D( V ,  B )  = 

D j ( V ,  B) .  Note that, for all U, U, and w in V ,  we have ~. 

uuw E -wuu (mod F 1 ( V ,  B ) )  

u 3  = B(u, u)u (mod F'(V, E ) )  

u € 3 ~ € 3 u - O  (modF1(V,B)). 

The first and third congruences become strict equalities when B(u,  U) = B(w, U) = 0. and 
when B(u, U) = 0, respectively. These relations can be used to obtain alinearly independent 
subset of vector space generators of D(V,  B):  Let {e,] be some orthonormal basis of V ,  
and let e,, e, . . 'e,, E D(V,  B )  stand for e,, €3 e,, €3 . . . @J e,, mod I; let be the set of 



Note that if pj = 
implies that 

= pj+' (respectively, wj = bj+z f ~ j + l ) ,  (2b) (respectively, (zc)) 

e,,e,,...e,,e,,+,e,,+,...e,, E O  (mod F'-*(V,B)). (4) 

e,,e,, . . . ePi ej,ej,ej2ej2 . . . ej,ej, (mod F'-'(V, E ) )  (54 

Thus, it may be assumed that pj e /.~j+2, and, therefore, if k = 2s, either e,, . . .e,, = 0 or 

for one and only one pair of sequences (il, . . . , is) and ( j l .  . I., j,) satifying, I < i~ < iz c 
. . . e is < n, and 1 G jI c j z  c . . . < j ;  G n. Similarly, if k = 2s + 1, with s 2 1, 

(56) 
with ( i l ,  ..., is+,) and (j1, . . . , j,) satisfying, 1 < il < i' < . . . < i, < i9+l < n, and 1 < 
j l  < j z  < . . . < js 6 n. It follows that for k 6 2n, 

= e .  e . e -  e .  . . . e .  e.e.  e l ~ , % ' . . e p ~  - U ' J ~  i2 n GI Is ,,+, (mod Fk-'P', B ) )  

On the other band, dimDK(V, E )  = 0 if k > 2n. This follows from (4) and the fact that if 
k > 2n, there is at least one pair of repeated i or j indices when the /AS in e,,e,,> . . .e,, 
are relabelled so as to have eP,elLz. .  . = ei,ejlez2eA.. .. In particular, D(V, E )  is finite 
dimensional and 

dimD(V, B )  = 1 + n + n2 + n 

=$ (0 + ( k  11)) c) = $ (": ')c) 
= coefficient oft" in (I +t)"(l+ t)"+' = rn+l) 

From the algebraic-theoretic point of view, the next step is the classification of the 
irreducible DK(V, B)-modules. As was pointed out to us by Professor S Sternberg, most 
of the arguments in the proof of the following theorem were already present in Kemmer's 
paper [71. The modern-language proof given here is due to Sternberg. 

Theorem3. Let D(V, B) betheDK algebra for thepair (V, B).  Let A(V) = e k x a o k ( V )  be 
theexterioralgebraofVandforeachk=O,l, ..., n =dimV,set,Mk=~'(V)$r\'+'(V). 

(i) Mk has the stlllcture of a D(V, +module (of dimension (;$)). 
(U) The modules Mw, and are isomorphic fork = 0, I , .  . . , n - 1, and ~M,, is a 

trivial one-dimensional module. 
(iii) If n is even, MO, MI,. .~., Mn/2, are all irreducible, and together with Mn, give the 

complete list of simple D(V, E)-modules. 
(iv) If n is odd, MO, MI,. . ., M ( n - 3 p ,  are all irreducible; M ( n - ~ y 2  splits into the direct 

sum of two (non-equivalent) irreducibles, each of dimension ((/:)d. These, together with 
Mn> form the complete list of simple D(V,  E)-modules. 
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Proof. We shall fix some notation and conventions. First, the bilinear form B on V ,  
induces a bilinear form on ~(V)-also denoted by E-under which B ( d ( V ) ,  A'(V)) = 0, 
whenever j # k.  For each ?I E r\'(V), eh)  is the map A(V) -+ A(V) of exterior 
multiplication by 7~ from the left; i (q )  is the adjoint of e(q) with respect to B. If the signature 
of B is ( p ,  4). our choice of orientation in V is given by uol E ~ " ( v ) ,  with B(uol, uol) = 
(-1)q. In particular, 
B(*w, *U) = (-l)qB(o, U), for all U E A(V), and (* o *)I,+(") = (-l)q +k(n-k) id,,qv). 

(i) For each U E V ,  let, ek(U):Ak(V) 4 A'+'(V), (respectively, ik(u):Ak(V) -+ 
Ak-'(V)), be the reshiction to Ak(V) of the exterior (respectively, interior) multiplication 
byu. D ~ ~ ~ ~ ~ & ( ~ ) : A ' ( V ) ~ A ~ + ' ( V ) - + A ~ ( V ) @ A ~ + ' ( V )  by 

0 A Siinchez-Valenzueln and R E Zuazua-Vega 

Finally, Hodge's star operator is defined by *w = i(o)uol. 

Since, ix+l(u)ek(v) = N u ,  u)id - ek(u)ik+l(u), ek+lek(u) = 0, and ik+l(u)ik(u) = 0, one 
easily verifies that 

P k ( d f " u )  = B(u. W d U )  

and the universal property of definition 1, extends to a representation of D ( V .  B). This 
proves (i). 

(ii) The fact that Mn is a one-dimensional module follows trivially. On the other 
hand, the equivalence between Mw, and M,A-I is given by Hodge's star operator. More 
precisely, we claim that * o ,%(U) = (-l)'&-k-l (U) o *. To prove this one must show that 
in-k(u)o* = (-l)'*oek(u), and *oir+l(u) = en-k-I(u)o*. However, the second equation 
follows from the first and the appropriate formulae for * o *. Now, for any w E A ~ ( V ) ,  we 
have 

in-&) * o = i,-k(u)i(w)uol= i ( o  A ~ U ) U O ~  = (-l)'i(u A o ) u d  = ( - I )~  * ( U  A o) 

and our claim follows. 
(iii) We restrict ourselves to 0 < k < n/2. Observe that 

e&)ik+I O )  (U) 

0 ik+l ( a ) )  ( OU) ii+c)) = (ik+l(r;lek(V) 
(ex(.) 0 

er(u)ik+l O )  (U) 
= (1 - ek(;ik+l(u) 

Now, ek(u)ik+l ( U )  is the derivation induced on A(V) by the rank-one element, u@u E gl(V) 
(which, under the identification of V and V* via B ,  is defined on AI(V) N V by 
( U  @ u)w = B(u. w)u) and such elements span the whole algebra gl(V).  Now, gl(V) 
acts irreducibly on Ak(V)  and the representations of gl(V) on A'(V), and A~+'(V)  are all 
inequivalent except when, k = i ( n  - 1) (which does not occur, however, when n is even). 
Hence, the products bk(u)p~(u) generate all of End(Ak(V))/(l) fB End(A'+'(V)). This 
implies that if W is an invariant subspace of M k ,  then W = W fl A'(V) @ W fl nk++'(V) 
and that each of these intersections is either [O} or the whole space. On the other hand, 
Ok(u) is a non-zero map which interchanges the two components. Hence, either W = (0) or 
W = Mw; i.e. the representation is irreducible. Furthermore, for k = 0,1, . . . , n/2, the Mk 
s are clearly inequivalent (in fact they even have different dimensions). Finally, to prove 
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that these Mks, together with the trivial module, M,, are alI the irreducibles, it is enough to 
show that the sum of the squares of the dimensions add up to the dimension of D(V, B).  
Now, the sum of squares is 

1 2 n + 2 .  2 n + 1  
2 n + l  

=~-( )=(  ) =dimD(V,B) 

which completes the proof. 
(iv) When k = 0, 1,. . . , (n - 3)/2, the irreducibility of the MX s follows as in (iii). 

When k = (n - 1)/2, the dimensions of A'(V), and /i""(V) are the same, and Hodge's 
star operator interchanges these two. Thus, * leaves Mcn-l),* invariant. Its splitting into the 
direct sum of two non-equivalent ineducibles of dimension ((:I each corresponds to 
the *-decomposition into self-dual, and anti-self-dual pieces. F i d y ,  the fac! that the sum 
of the squares of the dimensions of the non-decomposables is the dimension of D(V, B )  

0 

A consequence of the explicit realization of the vaiious irreducible DK modules is the 
following: each MX comes equipped with a non-degenerate symmetric bilinear form; namely 
the direct sum of the restrictions of B to ~ ' (v ) ,  and n*+'(V), respectively. 

Proposition#: Let D(V, B )  betheDKalgebraforthepair(V, B).  Let A(V) = @k20~k(V)  
be the exterior algebra of V, and let B k  be the restriction to A ~ ( V )  of the bilinear form 
induced on A(V) by B.  Let M i  = Ak(V) @ A ~ + I ( V )  and let pk: D(V, B )  + EndMk be 
the representation described in theorem 3. Then, 

follows by a simple computation as in (iii). 

(i) is orthogonal; i.e. for each U G V, and all w ,  w' E A~(V);  and U, U' E A~+'(V), 

(Ba @ &+i)(Bk(~)(@+@), w ' f d  - (& @B~+I)(o+u, Mu)(o'+u')) = 0. 
(ii) Let ( p ,  q) be the signature of B on V. The signature of B' is given by 

Proof. (i) From the previous theorem, 

M u ) ( w + d  = ~ + I ( u ) u  + e r ( 4 w .  
Now, B(i~+~(u)u,u')  = 0. and B(ek(u)w, 0') = 0, due to the perpendicularity of A'(V), 
and Ak+'(V) with respect to B .  Snce,  the operators e@), and i(u) in A(V), are adjoint to 
each other with respect to B, we have 

&+l(ek(u)w, P') = MO, i . t+i(u)d and , B&+I(U)U, 0') = Bk+l(u, ek(U)w') 
kom which assertion (i) follows. 

(ii) Let [e,  I 1 < p < n = p + q )  be an orthonormal basis of V. Assume B(e,, e*) = 1 
(respectively, B(e,, eJ = -l), if 1 < p < p ,  (respectively, if p + 1 < p < n). Then, 
{e,, A . . . A e,, I 1 < p1 < t. c pk < n} is an orthonormal basis of /\W) and 

&(enl A '.' A epk. epl A 1 ' .  A e,) = B(e,,, e&, ) .  ' .  B(errk, e d .  

Now, the right-hand side is +l, only if the number of e,,s with B(e,, e,) = -1 is even. 
Thus the various contributions to the signature of B k  can be counted by first decomposing c) as the sum, (:)e) (running through all i, and j ,  with i + j = k) ,  and then separating 
those with even j .  0 
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Remark5. Let us denote by (pk. qk), the signature of Bk as given in the proposition above. 
Due to the identification of O(pk, q k ) ,  with O(qk, pk ) ,  the actual signature of the induced 
bilinear form on Mk might come out with any of four possibilities: ( P k  + p k + l ,  qk + q x + 1 ) .  

in the realizations of the DK-modules we study in section 4, the signatures on the various 
Mks appear in an alternating fashion according to table 1 (see section 5). 

0 A Sdnchez-Valenzuela and R E Zuuzua-Vega 

(PK + a+[, q k  + P~+I),  (a + Pk + QW) or (qk +a+[, PX + m+d. It turns Out that 

’Table 1. Signahtres of the onbogonal forms on the nondecomposable DK-modulfs, MA, induced 
by an orthogonal form of signature (q + 2, q)  on V (q = 0, 1 and 2). 

Remark 6. Note that the sum of the dimensions of all the irreducible DK-modules is exactly 
the dimension of the exterior algebra, A(V).  Therefore, the direct sum of all the irreducible 
representations gives a representation p: D(V, B )  --f End(A(V)). When n =dim V = 2m, 
we have 

p: D(V, B )  + End(R2”) N End(RzmXr). 

In other words, one may realize in the space of 2”’ x 2”’ matrices, the completely 
reducible representation uniquely characterized by having each irreducible of D(V,  B )  with 
multiplicity one in its decomposition. Similarly, when n = 2m + 1, one may realize this 
unique representation in R2mx2m R2mxzm. 

Remark 7. Since the generators, (e& of the DK algebra, D(V,  B) ,  satisfy the relations 
(2b), their images, p, = B(e,), under any representation, B: D ( p ,  q)  + End U, have either 
x3 - x, or x3 + X, as minimal polynomial. In particular, A = 0 is an eigenvalue for 
all the p,s. Hence, Kerp, # (0). If it furthermore happens that dimn,Ker& = 1, 
the irreducible, one-dimensional, trivial representation occurs with multiplicity one in U. 
Again, this will be the case in the realizations given in section 4. 

3. Representations of DK algebras from C l i o r d  algebras 

We shall now show how to find representations of the DK algebras, in terms of representations 
of Clifford algebras. Certain familiarity with the latter will be assumed (e.g., see [SI, and 
references therein). The notation is the following: C(V, B )  is the Clifford algebra associated 
with the pair ( V ,  B ) ,  with ( V ,  B )  as in the previous section. In concrete examples, explicit 
reference shall be made to the signature and we shall write C ( p ,  q), D ( p ,  q), etc. instead 
of C(V, B ) ,  D(V. 8). etc, whenever sgnB = ( p , q ) .  

Remark 8. The basic observation on which the following developments are based is this: 
in the tensor product algebra C(V,  B)@C(V,  B )  (with product defined by (a@b)(u’@.b’) = 
aa‘ @ bb’), the subalgebra generated by the elements 

(8) p(u) = ~ i ( u  @ 1 + 1 @U) U E V C C(V, B )  

satisfies the DK defining relations (la). This follows at once from the Clifford algebra 
relations, uv + vu = 2B(u, v ) l .  
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Proposition 9. Let n:C(V, B)  + End(WI) and y?:C(V, 8) -+ End(&) be any two 
representations of the Clifford algebra C(V,  E ) .  Then, the map p: D(V,  E )  -+ End(Wl @ 
WZ), defined by 

LX.1 = f (n( . )  @ idw, +idw, @.yd.)) 
yields a representation of ~ D ( V ,  B )  on WI @ WZ. 

Pro@. This is a direct calculation from the definitions. It suffices to check that ( l a )  is 
satisfied by ,9 when applied to any decomposable vector wl @ w~ E Wl @ W,. Thus, for 
any pair of vectors, U, and U E V ,  we have 

K u )  o ~ ( u ) o B ( u ) ( w l  @wz) = ~ ( Y l ( u ) n ( v ) Y l ( u ) w l  @wz+Yl(v)Yl(u)wl @YZ(uNJz 

+ Yl(u)Yl(v)wl @ n ( u h  +yl(v)wl @ M ( U P W 2  

+ M ( u P W I  @ YZ(U)WZ + YI(U)Wl @ YZ(U)YZ(U)WZ 

+ n ( u ) w  @ rz(v)Y2(u)wz + w1 @ Yz(u)Yz(v)YZ(~)wz).  

Since the yis are representations of C(V,  E ) ,  they satisfy yi(u)yj(u) + yi(u)yj(u) = 
2E(u, U) idw,; i = 1, 2. Using these relations, the right-hand side above simplifies to 

~ ) B ( U ) ( ~ I  @ wz). 0 

Remark 10. (Kostant) In particular, C(V,  E )  has the structure of a C(V,  E )  @ C(V,  B)- 
module, by letting, for all a, b, and w E C(V,  E ) ,  (U @b) .c = axa(b); 01 being the principal 
anti-automorphism of C( V ,  E )  which is the identity on V c C(V,  B). Hence, for all u E V ,  
(u@l+l@u).w = uw+wu. Now, under the vector space identification, C(V,  E )  N A(V), it 
is well known (and easy to prove) that, for all o E A ~ ( V ) ,  uo+wu = 2ek(u)o, if k is even, 
whereas UW+W = Zik(u)w, i f& is odd. Therefore, %he D ( V ,  B)-modules, A ~ ( V ) @ A ~ ~ I ( V )  
of theorem 3 are the result of breaking up C(V,  E )  N A(V) into D ( V ,  E)-irreducibles; 
D(V,  B )  C C(V, E )  @ C(V,  E). (We are indebted to S Sternberg for communicating to us 
this argument of B Kostant, and to B Kostant himself for letting us include it here.) 

Now, in order to realize explicitly the D(V,  B)-irreducible representations in matrix 
spaces, we shall make use of the following trivial facts: 

Proposition ii. Let the hypothesis and notation be as in proposition 9. Identify WI @ WZ 
with the space of dim W1 x dim Wz-matkces, via 

w] @ W2 3 x = c X j j W / )  @ W y )  c--f x = (xij) 

for some choices, [U/)], atid [w?)), of bases of Wl, and Wz. Then, the representation 
,¶: D ( V ,  B )  + End(W1 @ Wz) ,  is given by 

B ( . ) ( X )  = i ( n ( . ) X  + xY2(.)1) 

Proof. This again is a straightforward consequence of the definitions. Let R: Wl + WI, 
and S: Wz -+ WZ be linearmaps, such that R(w7))  = xi Rijwj') and S(wy)) = Ci Suwf). 
Then, 

R B s xjiwj(l) @ = ~ i j ~ j l ~ k 1 w j ' '  8 wi2) = J ' J R X S ' ) ~ ~ ~ ~ ' )  @ w?) ( 1 
where (RXS' ) jk ,  denotes the (i,k)-entry of the product of the matrices, R = ( R i j ) ,  
X = ( X j l ) ,  and the transpose of S = (Ski) .  In particular, if X is identified with X = ( X i { ) ,  

0 R 8 S(X) is identified with R X S ' ,  from which the statement follows. 
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Table 2. Clifford modules W(q -+ 2,q)  (q = 0, 1 and 2); their spin groups, their induced 
real bilinear farms, and suitable matrices, b,,, representing the bilinear forms induced on 
w(4 + 2.4) @R w@ + 2, 4). 

Proposition 12. Assume that y, = y2. Then, the subspaces of symmetric and skew- 
symmetric matrices are invariant for the representation ,8. 

Proof. Let the notation be as in the previous proposition. If X' = +X, then 

(B(U)X)'  = ; ( n ( u ) x  + XYZ(U)') '  = *4(XY,(U)',+ YZ(U)X)'. 

In particular, if y1 = y2, @(u)X)' = zkp(u)X. 0 

It will now be assumed that the symmetric bilinear form, B ,  of V has signature (q+2,q) .  
with q = 0, 1, or 2. 

Recall that the simple Clifford modules W(q + 2,q). are naturally identified with 
C2' 1: R2"' (see [8 ] ,  and section 4 below). In particular, taken together with their natural 
geometric structures defined by the spin goups, Spin(qf2,  q ) ,  they induce natural geometric 
structures on the (real) tensor product spaces W ( q  + 2, q )  @ W ( q  + 2, q ) ,  according to the 
following scheme (cf appendix A): 

O(rl)-module i f q = O  
i f q = 1  1 0(32,32)-moduIe if q = 2. 

W ( q  + 2,q) @R W(q + 2, q)  N 0(8,8)-module 

Furthermore, it follows from the proofs in the appendix that the orthogonal structure 
in the tensor product spaces depends only on the bilinear form with which the Clifford 
modules come equipped with, as follows: after identifying W ( q  + 2, q )  @E W ( q  + 2, q )  
with the space of 2qf' xZq+'-matrices, the orthogonal structure, (., .)q is computed in terms 
of matrices 5, and < , as 

(e, Gq = Tr8(b4<bqo') (9) 

where bq is the matrix associated with the real geometric structure on W(q + 2.4). We 
summarize the relevant information in table 2, where 

We can now state the following result, which is a consequence of proposition 4, remark 10, 
and our computations in section 4 below (see also remark 5, and table 1). 
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Proposition 13. The geometry induced by Spin(q + 2, q )  on W(q  + 2, q) @ W ( q  + 2, q )  
coincides with the geometry induced by B on ~(R'@*ll), described in theorem 3. 

Thus, the rest of our exposition (the next two sections) will focus on realizing explicitly 
the completely reducible DK-modules of remark 6 for the cases under consideration. We 
shall need only one technical point that we record in the following: 

Pmpositio~ 14. Let p: A +.EndU be a representation of some associative R-algebra A.  
Let (., .) be a given geometric structure on U (i.e. an orthogonal, symplectic or Hermitian 
form). Suppose that for each a E A ,  there exists some h, E R - (01, such that 

(B(a)t ,<)  + L ( t ? B ( a ) < )  

Then, the orthogonal subspace, W', of any invariant subspace, W c U, is invariant, too. 
In fact, the same conclusion is attained if this condition is satisfied only on a generating 
subset of A. 

Proof. By definition, WL = (q E U I (7, e )  = 0, for all E W). Let a E A be arbitrary 
and let t E W. Since W $invariant, p(a)< E W .  Thus, (q, &)$) = 0, for all q E W'. 
By hypothesis, (B(a)q, 6) = -ha(q, B(a)t), which is zero. Therefore, B(a)q E W'. 

Now, let [U* I fi E M M finite) be a set of generators, and assume that (B(u)t ,  <) + 
hu(6, B(u)<) = 0 holds only for the us in the generating subset. Writing any a E A in the 
form, a = uluz . .  .U,, we obtain 

( m l u Z .  . . u n h  e )  = ( - i j n w u 2  . . . A,XV, KU.) . . . B ( u ~ ) B ( u ~ ) ~ )  

for all q, and in U.  In particular, if belongs to some invariant subspace, W, and 7 to 
its orthogonal complement, W'> the left-hand side is zero. 

We shall now give an ad hoc criterion under which the hypotheses of proposition 14 
are satisfied for the representation of B given in proposition 11 with yl = y2 = y .  From 
(l), we have 

(B(u) t .  0, +Ut,  B ( U ) < ) ,  = Tr((B(u)E)(b,<bl)i) + A u  Tr(t(bq(B(U)<)b4')') 

= ~ITr(ft(b,Sb,')' +t'(b,<b,')')(y(u) + hu(bqY(U)bq-l)'))J. (10) 

Therefore, the result we seek is the following: 

Criterion 15. If for each generator U E V ,  the matrices y(u) have definite symmetry, then 

= Y ( U )  + hu(bpy(U)bp-')' 

is identically zero and therefore the representation 6 of proposition 12 has the properties 
stated in proposition' 14. 

The truth of the assertion follows from (10) and the fact that b, has definite symmetry. 
Therefore, the matrices R,(u) become zero for A, = i l .  To apply it, all what is needed is 
to look at the specific Dirac matrices of the representation y of C(q + 2,q). This is done 
in the next section following the approach of [8]. 
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4. Representations of DK algebras 

Let IEp+zsq be the vector space R*+', equipped with the orthogonal form of signature 
(q + 2.q).  Let (e,] be an orthonormal basis for R9+z,4. We shall denote by y,, and 
B,, the images of e, under the inclusions, y:Rpfzt4 + C(q + 2, q)  N EndR(@'), and 
B: R9+24 + D(q+2,  q )  C EndR(Ry ), respectively. We recall that the fundamental 
Clifford module, W ( q  + 2, q)  N Rzq", is naturally identified with Cy because there is a 
Clifford algebra element, 

0 A Shchez-Valenzuela and R E Zuazua-Vega 

+I p i 1  

yzpi.3 =YIY2"'Yzq+2 (11) 

satisfying 

(~?4+3)' = -1 and ~ z q + 3 ~ ,  = - ~ , ~ 2 4 + 3 .  (12) 

Thk element is invariantly defined, since it only changes by a sign under the action of 
the automorphism group of the algebra C(q + 2 ,q ) .  Thus, yq+3 endows the real module 
W(q + 2, q)  with a natural complex structure. Furthermore, the second set of relations in 
(12) imply that any complex representation of C(q + 2, q )  in which the complex structure 
is defined by yzq+3, must represent the generators y, by antilinear maps. In what follows 
we shall give to W ( q  + 2, q )  this natural complex structure, and identify it with C". 
Moreover, we shall ocassionally think of the algebra of 2q+I x 2,+' real matrices as 
EndR(W(q + 2,q))  Endx(C"), and decompose it as 

EndR(C") = Endc(Czq) '&J a, oEndc(C") (13) 

where Endc(Cz") is identified with the algebra of 24 x 24 complex matrices, and a,: @* 
CZv is some fixed, invertible, antilinear map. In particular, we shall always have y, in the 
second direct summand of this space. 

4.1. Case q = 0 

We identify W(2,O) = Rz with C,  in such a way that multiplication by i = &i is the 
real transformation, 

J z ( w ~ )  = wz and JZ(WZ) = -WI (14) 

and 

Jz M = M M .  

Note that up to a complex constant, the only antilinear map a0:C + C is complex 
conjugation, K :  z H Z. Thus, the setting is 

and both matrices have definite parity. Therefore, the representation of D(2.0) they induce 
satifies criterion 15 hence, and, proposition 14. Also note that the representation space for 
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D(2,O) is isomorphic to C @R C, which in turn is isomorphic to the quaternionic space' 
H. One convenient identification is given by 

l @ l * l ~ = l  i @ l + i ~ = i  l @ i + j ~ = j  i @ i c t k g = k .  (16) 

Since y ~ :  z I+ i and y2: z H -iZ, the prescription of proposition 9 gives 

81(1)=1 ~ 81(i)=O @ 1 ( j ) = O  B1(k)=-k  

and 

BZ(1) = -$(i+j) B d i )  = -$U +IC) B20' )  = - i ( l  fk) 

BZ(k) = -$(i+j). 

,%(q) = - $ ( i q i + j q j )  and h ( q )  = i ( i q k + k q j ) .  (17) 

These can be rewritten in terms of algebraic operations in H as follows: for all q E H ,  

Also note that 

Kerpl =Span,{i,j] and Kerpz=Span,[l-k,i-j) 

and therefore 

Kerp1 nKerpz= SpanR{i-j). (18) 

The semisimplicity of the representation becomes evident when we change the basis of H 
so as to obtain a matrix representation of the 8,s in which one of them is diagonal; say, 
&. Such a basis is (i - j, 1 -IC, 1 - i - j + I C ,  l f i  + j  + k), and then 

0 0 0 0  0 0 0  0 

8 1 = i ( ~  1 0 0 2 2  .) and h = ( :  :). 0 1 0 0  0 0 0 - 1  

It is therefore, clear that the matrices of the representation break up into the direct sum 
of two blocks: the trivial 1 x 1 block of the upper left corner, and the 3 x 3 block of 
the lower right. These yield precisely the two irreducible representations of D(2,O). In 
pgticular, since dim D(2,O) = 10, there must be a one-dimensional ideal in D(2,O) that 
is represented by zero in the three-dimensional representation. It is easy to check that this 
ideal is generated by the element 

2 z' = 1 - 812 -~B22 + 812822 = (1 - 81%1 - 8 2  ). 

Finally, when the representation space W(2,O) @ W(2,O) is identified with the space of 
2 x &matrices via 
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the action of the &s is given by (see proposition 11) 
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, I ( . ,  :)=(" 0 -d O )  and b d  

When these expressions are used, the common kernel is defined by a = d = 0, and 
b = -e; i.e. the one-dimensional subspace of skew-symmetric matrices. Note that the three- 
dimensional space of symmetric matrices corresponds precisely to the subspace generated 
by (1 - k, 1 - i - j + k, 1 + i + j + k), under the identifications above. Also note that 
this subspace is cyclic for the representation and hence, irreducible; e.g. 

Let us point out that the identifications (19) generalize to 

(21) R2q+'x2g*' czq @c2' H " X "  

R'~+' 3 ( X I ,  . . . , x2$, yI, . . . , y2.1 H (xl + iyl, . . . , xa + iyzp) E c". 
in the following way: the identification of W(q + 2, q) N R2"' with I?' is given by 

(224 

Thus, it is assumed that %+3 is represented by the matrix 

Then, CZq @ C" is identified %ith HZqx2' as follows: let 
whose only non-zero component occurs in the ath row; let this be ra + iy, E C .  Then 

be a column vector in C" 

c" @ czq 3 (G @ y )  - ((x, + iy,) @ (q + iy,d 

= ( x ~ x J ~ +  ydx,qi + x,y#j + y,ypk) E HZqx". 

This yields the correspondence 

R2q+'xz+l 3 ( A " ) H ( A 1  + Bi + C j  + Dk) E H2qx" (231 B D  

where A, B, C and D are 2.9 x 29 blocks. 

4.2. Case q = 1 

This time the Clifford module W(3.1) N is naturally equipped-via Spin(3, l), 2: 
SL(2, R)-with symplectic geometry. In addition to the natural complex structure in 
W(3,l) defined by ys. there is again a natural choice of the antilinear map a1 (cf 
equation 13);i.e. namely, the (up to a constant) unique map, *: Cz 4 C2, that intertwines 
over the real field the two inequivalent, two-dimensional, complex representations, A H A, 
and A H (A*)-' ,  of SL(2, R), A* being the conjugate transpose of A (see [SI). We recall 
that * is given by 
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In particular, * o * = -id, and one can directly verify that, *A(*)-' =~ (A- ) - t ,  for all 
A E SL(2, C). More generally, for any matrix B E CXz, 

* B(*)" = (Bay 

with B" the Cramer adjoint of B (i.e. the matrix defined by the relations BOB = (det B )  id = 
BB"). 

Now, to represent the Clifford algebra, we first use the oneto-one correspondence 
between the points in spacetime, R3,', and the subset, H(2)  c CX2, of 2 x 2 Hermitian 
matrices given in terms of the Pauli matrices; namely 

= tu0 + xu1 + yuz + zu3 E H ( 2 )  t - k z  x-- iy  
xfiy t--Z 

3 1  R *  3 X = ( t , ~ ,  y,z) + X = 

where 

U,,=(; y , )  . I = ( :  A) u ~ = = ( ~  0 -i o )  o ~ = ( ~  1 0  (25) 

Observe that B(X, X) = - det X. Also note that 

(x:oX)(*oX) =-*X(*)-'X =-X"X=-(detX)12= B(X,X)lz 

which follows from the properties of *. These are, however, the defining relations for the 
Clifford algebra C(3, 1) _N Enda(Cz) (see [SI): Thus, 

yu =*u,~ (26) 

which is consistent with the fact that ys = yo'y1yzy3 is multiplication by i. In terms of the 
real basis of W ( 3 ,  I), the gamma matrices arc: given by 

which have definite parity; here, ulR, and u3'. denote the real 2 x 2 matrices whose entries 
are given exactly as in (25) above, but thought to be associated with real maps Rz --f Rz. 
In particular, criterion 15 is agahsatisfied and the representation of D(3,l) induced by 
these ys preserves orthogonal complements. 'In terms of real 4 x 4 matrices, the action of 
the generators B, is given by 
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where A ,  B ,  C and D are 2 x 2 blocks, and [X, Y] (respectively, [X, Y)) denotes the 
commutator (respectively, anticommutator) of the matrices X and Y. On the other hand, in 
terms of quaternionic 2 x 2 matrices, Q = A + Bi + Cj + Dk, the action is 

Bo(Q) = -$( iQiJz  - JZjQj) 
(29) 

h(Q) = - $ ( i Q i j + i j Q j )  

In these expressions, the ups are the Pauli matrices though inside sXz. Note that the 
common kernel of the &s is defined by the conditions 
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Bi(Q) = - i ( i Q i ~ 3 + ~ 3 j Q j )  

&(e) = $(~Q&JI  +u i jQj ) .  

D = - A  C = - B  [ A ,  J z l = O = I & ~ i l = ( A , 4  

{ B ,  J z )  = 0 = [ B ,  011 = [ B ,  SI. 
These further imply B = 0, and A = aJ2, with a E R. Thus, the common kernel is 
one-dimensional and therefore carries the trivial one-dimensional representation of D(3,  1) 
(see remark 7). Moreover, its orthogonal complement within the skew-symmetric matrices 
with respect to the orthogonal structure given in (8) is the set of matrices of the form 

and carries the irreducible fivedimensional representation. The irreducibility follows by 
showing that it is a cyclic submodule, which in turn follows from the explicit action of the 
@,S. Similarly, the subspace of symmetric matrices is irreducible for the same reason: the 
explicit action of the &s leads one to the conclusion that it is a cyclic submodule; it is the 
carrier of the ten-dimensional representation of O(3,l) .  

4.3. Case q = 2 

We shall continue using the notation introduced in [SI. Thus, (e-, eo. el. ez, e3, e+) is an 
orthonormal basis of .@', with -B(e-, e-) = -B(eo, eo) = 1 = E@,, e j )  = B(e+, e+), 
for j = 1, 2 and 3. The Clifford module, W(4, 2), is now isomorphic to R8, and when 
viewed as the complex space C4 via M. it is endowed with a Hermitian shvcture of signature 
(2, 2), since Spin(4,2), N SU(2,Z) .  There is again a natural choice for the antilinear map 
a2 appearing in the decomposition (3); namely, the (up to a constant) unique map that 
intertwines the two Weyl components in C4: 

This is the charge conjugation map at the vector space level (see IS]). The gamma matrices 
this time are given by [SI 

( 0  *) yo= (* 0 -* 0 )  vj= (-*uj 0 - *u j  0 ) j = 1,2,3. Y* = F* 0 
(32) 

They satisfy the Clifford algebra relations, 

2 -  Y+Y- + y-y+ = 0 Y*Yp + Y p Y i  = 0 Y- - Yo2 = -1 

y+* = yjz = 1 j = 1 , 2 , 3 .  
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Moreover, thinking of the maps *, and U, of Cz into itself in terms of the underlying 
four-dimensional real space, we have 

where uIR and ujR are as in (27). All these matrices have definite symmetry, as 

* I = - *  uWr = U p  /I = 0 , l .  2,3. 

Therefore, the same is true for the gamma matrices (32). Hence, the representation of 
D(4,2) obtained as in proposition 11 preserves orthogonal complements (see criterion 15). 
Finally, the action of the &s on the space of 8 x 8 real matrices is ( j  = 1, 2, and 3) 

(where use has been made of-the fact that when 
matrices *uj + u p  = 0). and 

and uj are thought of as real 4 x 4 

In terms of quatemionic 4 x 4 matrices, we have 

@o(Q)= + ( i Q i * - * j Q j )  O j ( Q ) = - + ( Q , * u j ]  j = 1 , 2 , 3  

B+(Q) = -i(*iQ - Qj*) (36) 

From these expressions one determines the common kernel of the @,s: from 8 d Q )  = 0 
one obtains * A  = y D * ,  and * B  = C*, which immediately yields A = 0 = D. With this 
information, Bo@) = 0 implies *C*-' = -C with an identical equation for B .  Using this, 
one finds from p j ( Q )  = 0 that [C, uj] = 0 ( j  = 1, 2 and 3), and similarly for B .  It then 
follows that C is a complex multiple of the 2 x 2 identity matrix. Since *C*-' = -C, 
it follows that in fact, C = iclz, with c E R. Reverting to real matrices, it follows that 
C = cJ4 (cf (22)) and hence, B = C'. Thus, the matrices of the form, 

+%(e) = $(* ikQk . - iQ i j* ) .  

carry the trivial, one-dimensional representation of 1)(4,2); this time occurring inside the 
space of symmetric matrices, S2(R8). Its orthogonal complement with respect to the form 
(8) is the 35-dimensional irreducible representation; it is a cyclic submodule. On the other 
hand, the subspace, A2(R8),  of skew-symmetric matrices breaks up into two irreducible 
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representations of dimensions 7, and 21, respectively. The seven-dimensional module 
consists of all matrices of the form, 
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with br, and bz in A'(@), B, and 6 real multiples of the 2 x 2 identity matrix and B 
a zero-trace 2 x 2 matrix. The 21-dimensional submodule is defined by the orthogonal 
complement of these matrices, i.e. all matrices of the form 

(39) E - v  

b3 E+v R 

-(D' - LL) b3 
b4 D - w  

-(Cl -g) -SI -(E' - U )  b4 
E - v  

E+v R 

-(D' - U )  b3 
b4 D - w  

-(E' - U )  b4 
(39) 

with 63, and b4 in A2(R2) ,  ,u, and U real multiples of the 2 x 2 identity matrix, C ,  D and 
E traceless, and R and S, arbitnry 2 x 2 matrices. 

5. Orthogonal structure of the DK modules 

What remains now is to determine the signature of the orthogonal form (8) to completely 
elucidate the geometric structure of the irreducible DK modules just described (see remark 5). 
The case 4 = 0 is extremely easy, since (., .),j has signature (4,O) and corresponds to 
the standard, positive-definite, orthogonal structure on matrices: (t,<) H Tr(&'). It 
is therefore restricted to positive definite forms on the spaces of symmetric and skew- 
symmetric matrices. 

Now, for the case q = 1, we compute explicitly the quadratic form on Sz(@), and 
Az(R4) .  First of all, the orthogonal structure on W(3,  1) @ W ( 3 , l )  arises as the tensor 
product of two symplectic forms. In fact, W(3.1 )  is equipped with the geometry of 
Spin(3.1) whose identity component is SL(2, C),. After fixing a basis of W ( 3 ,  l), the 
symplectic form is the one associated with the manix Jz. This yields an isomorphism 
SL(2, C) 2 Sp(2, C). Finally, by splitting this symplectic form into its real and imaginary 
parts, one defines symplectic forms, Re 52, and Im JZ on the underlying four-dimensional. 
real space. By looking at either, Re Jz@Re Jz, or Im J z @ h  J z ,  one finds that the signature of 
the orthogonal structure on the tensor product space is (8,8). The details of these particular 
results will be substituted by proving instead the following two general propositions: 

Proposition 16. There are inclusions, 

Re: Sp(2n. C) - Sp(4n, R) and Im: Sp(2n, C) - Sp(4n, R). 

Furthermore, the two are related via right multiplication by a non-singular matrix, 

Re(X) = Im(X) J4" 

where J4" is as in (22b) 
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Proof. Let o be the standard symplectic form on Cb. Then, 

Both are skew-symme@ic and therefore, define symplectic forms on the underlying real 
space Rh. Moreover, the two are related as stated. Finally, the inclusions, Sp(2n, C) % 

Sp(4n. R) and Sp(2n,  C )  cf Sp(4n. R), follow by comparing real and imaginary parts of 
the equality o(gu,  gu) = o ( u ,  U), which holds for all U and U in Ck and g E Sp(Zn, C ) .  
0 

Proposition 17. Let (R4", Reo) be the symplectic real space obtained from the symplectic 
form o on C2". Identify R4" c3 R"" with the space of 4n x 4n matrices. Let (., .) be 
the orthogonal form R e o  c3 Reo. Then, the signature of (., :) res'aicted to the subspace 
of symmetric (respectively, skewsymmetric) matrices is (4nZ, Zn(2n + 1)) (respectively, 
(4n2, Zn(2n - I))). The same is true if Reo is replaced by Imw. 

Proof. Let 00 be the matrix comesponding to Reo. It follows from A2 in the appendix .. 
that, for all e E 124nX4", (5,  .$) = Tr(.$(o&&')'). In particular, for all symmetric matrices, 

E SZ(R4n), 

(t,O = -Tr(Co064.  

A plus sign appears on the right-hand side for skew-symmetric matrices. Thus, writing 

with Ai E Sz(R"),  and Bi, and Ci arbitrary, we have 

(6, e) = 4Tr(B3C3' - BzCz') + 2Tr(AoAl + Az.43) - 2Tr(B: + Ct). (40) 

The computation of the signature is reduced to knowing the signature of the quadratic forms: 
R"'" 3 X H {X, X h  = Tr(X2) (see lemma 18); and (X, X), = Tr(XX'); the latter being 
the standard, positive-definite form on matrices. Once this is known, the contributions to 
the signature of (., .) can be easily counted from (40); e.g., the contribution of Tr(B3C3') 
is found by rewriting B3 (respectively, C3) in the form X + Y (respectively, X - Y ) ,  with 

O X, and Y arbitrary, with similar substitutions for the other crossed terms. 
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Lemma 18. The quadratic form RnX" 3 X H (X, XIn = Tr(X2) is positive definite on 
S2(R"), and negative definite on A2(Rn) .  Furthermore, 

0 A Shchez-Valenzuela and R E Zuczzua-Vega 

sgn{., .I. = (in(. + 11, in(. - 1)). 
Proof. Recursively, one finds that 

sgnl., .I. = (pn. 9.1 = (n + PA, (n - 1) + qn-d 

and the statement follows from this by induction. 0 

Corollary 19. (i) The restriction of (., .)I to the irreducible 0(3,1)-module, S2(R4) has 
signature (4.6); 

(ii) its restriction to the invariant submodule, A z ( P ) ,  has signature (4,2); and, 
(iii) it is negative definite on the one-dimensional trivial submodule 3 (20~). 

Proof. (i) and (ii) follow from proposition 17. What remains is (iii), which is a 
0 straightforwad computation that we safely leave to the reader. 

Finally, for the case q = 2, we summarize the results in the following, 

Proposition 5. (i) (., .)z is negative definite on the one-dimensional, D(4.2) submodule 

(ii) its restriction to the irreducible, seven-dimensional submodule (38). has signature 

(iii) its restriction to the irreducible 21-dimensional submodule (39) has signature (12,9); 

(iv) its restriction to the irreducible 35-dimensional representation has signature (16, 19). 

(37); 

(4,3); 

and, 

Proof. (i) Let 5 be as in (37). Then, 

( 5 . 5 ) ~  = -Tr(fbz:bz) = -8c'. 

(ii) Now, let f be as in (38). Then, 

=Tr(Cb$bz) =4Trs2-4TrB2+4Tr(B'B)+2Trb,2+2Trb22. 

Now, the quadratic form, a H Tra2, for a E A'(@), is negative definite by lemma 18. 
Similarly, the form RZx2 3 Z H Tr(Z'Z) E R, is positive-definite and, so is its restriction 
to the subspace of zero-trace matrices. It follows that the signature of (., .)2 on the 7- 
dimensional irreducible subspace is (4,3), as claimed. 

(iii) This time let 5 be as in (39). Then, 

Tr(fb&b2) =2TrR2 +2TrS2 -4Tr(E'E) -4Tr(CD) 

- 4Tr(p2) + 4Tr(vz) - 2Trb,* - ZTrb,' 

and the signature can be determined using lemma 18, and counting the various contributions; 
e.g., the contribution of the term Tr(CD) is found by rewriting C and D as X + Y, and 
X - Y respectively. The conditions Tr C = 0 = Tr D translate into Tr X = 0 = Tr Y .  Thus, 

Tr(CD) = Tr((X + Y ) ( X  - Y ) )  = TrXz - Tr Y 2  
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and the results of lemma 18 can be applied directly. 

(37). It therefore consists of all matrices of the form 
(iv) The 35-dimensional module is the orthogonal complement in Sz(R8) of the subspace 

A 

C' Y ' i - a  s, B 
X ' + a  D' B' s4 

where all the blocks a?e 2 x 2 matrices. More specifically, A, B ,  C and D are arbitrary X 
and Y are traceless; SI, Sz, S3 and S4 are symmetric and (Y is a multiple of the identity. 
Then, 

( E , & =  -TT($bz$bz) =4Tr(XY)+4Tr(a2)+2Tr(SlS3+S~S4) 
- 4Tr(AB') - 2Tr(C2 + 0') 

and a simple counting of the various contributions yield the result 
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Appendix 

Let (VI, B1) and (VZ, Bz) be finite-dimensional real vector spaces with non-degenerate 
bilinear forms of definite parity (i.e. either symmetric or skew-symmetric). Let (V, B) be 
the pair obtained from (VI, B1) and (VZ, Bz) by setting V = VI 63 VZ and B = BI 63 Bz. 
Thus, 

B(UI @ UZ, V I  63 UZ) = Bi(ui, UI)BZ(UZ. VZ) 

on decomposables. Then, B163 BZ has definite parity: it is symmetric whenever B1 and BZ 
have the same parity and skew-symmetric otherwise. Furthermore, 

Proposition A l .  The bilinear form B163 Bz is non-degenerate. It is symplectic or orthogonal 
according to the scheme shown in table Al:  

Table Al.  Tensor product of symplectic and orthogonal spaces. 

(VI ,BI)  ' ( V z , B z )  (6 '23 Vz. 81 @ Bz) 
Onhogonal, Orthogonal; Onhogonal; 
sgn = (PI.41) sgn = (P2.42) sa= Golpz+qlqz,plqz+qlPz) 

Onhogon& Symplectic; Symplectic; 
sgn = (PI, 41) dim = 2n dim=2n(p1 

Symplenic: symp1ectic; Onhogonal, 
dim = Zm dim = 7.n sgn = (2mn, Zmn) 
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Proof. The proof consists of computing the matrix elements of B1 @ BZ relative to some 
special choices of bases in VI and VZ. 

(i) Let (VI,  E l )  and (VZ, Bz) be orthogonal spaces with sgnB1 = ( p l .  41) and sgn BZ = 
( p z ,  qz).  Choose orthonormal bases [ei, e,,+,} and [ f r ,  fm+,,) of VI, and Vz, respectively, 
with Bl(ei, e j )  = 6ij, for 1 < i, j 4 p1, and B1(ept+,, e,,+,) = -a,,, for 1 < p ,  Y 4 41. 
(Similarly, Bz(fi, h) = a,,, for 1 4 r, s < m. and Bz(fm+,,, fpr+A = -a,,, for 
1 < g, 4 42.) Then, Iei @ f r ,  epI+p @ fm+#, ei @ fm+c, epI+p @ f r }  is an orthonormal 
basis for VI @ VZ. In terms of this basis, the matrix of B 1 @  BZ takes the form 

0 A Shchez-Valenutela and R E Zuazun-Vega 

ej @ f x  e,,+" @ fm+r ej @ fm+r e,,+" @ f s  

0 
-1 ") [ :  0 0 

1 e,,+, @ f n + ,  [ :  0 0 0 -1 

ei @ f r  1 0 0 
e,,+,@f,+, 0 1 0 
ei @ fm+o 

e,,+@ @ f r  

0 -1 

wherethediagonalblockshavesizesplpzxp~pz, qlqzxqlqz,  p1qzxp1q2, andpzq1xmp1, 
respectively. 

(ii) Now, let (6, B1) be orthogonal with sgnB1 = (PI, 41). and let (VZ, Bz) be 
symplectic of dimension 2n. Let (er, ePl+,) be as in (i), and let { f,, fn+r I 1 4 r < n] be 
a symplectic basis for Vz; i.e. 

&(fn+r. fs) am = -Bz(fr, f n + s )  Bz( f r ,  fs) = 0 = Bz(fn+r,  fn+s). 

Then, lei @ f r ,  et @ fn+7,  e,,+, @ f,, ePI+, @ f n + r )  is a basis of Vl @ VZ, with respect to 
which the matrix of B1 @ BZ is skew-symmetric and invertible. It is given by 

ej @ fs ej @ fn+s e,,+" @ f s  e,,+, @ fn+s 

ei @ f r  -1 0 0 
0 0 0 

0 1 
0 

ei @ fn+r 

@ f, 

Here, the first two diagonal blocks are of size npl x npl, while the last two have size 

(iii) Now let ( V I ,  E l )  and (Vz, &) be symplectic spaces of dimensions 2m and 2n, 
respectively, and let (ei, e,+i I 1 4 i < m) and (f,, fn+r I 1 < r < n)  be symplectic bases 
for them. Then, {et @ fi, e; @ fn+,. e,+i @ f,, e,+i @ fn+,) is an orthonormal basis for 
VI  @ V, of signature (hm, 2nm). In fact, in term of this basis, the matrix of BI @ BZ 
takes the form 

nql x nql.  

ej @ fs ej @ fn+s em+j @ .fs em+j @ fn+s 

ei @ f r  0 0 0 1 
ei @ fn+r  0 -1 0 

0 0 
0 0 

%+i @ f r  
em+{ @ fn+r  
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where the entries are nm x nm blocks. To elucidate the signature of this matrix-which we 
shall denote by B-we change the basis in VI @I VZ by means of g E GL(4mn. R) of the 
form, 

/ A  0 0 B\ 
O a b O  

C O O D  
' = ( o  c d '  O J  

where the entries are again nm x nm blocks. Thus, 

BA' t A Bt 0 0 BC' + AD' 
0 -(bat +ab') -(bc'+ad') 0 

-(dui + cb') -(dc' + cd') 0 gBg' = 

0 0 DC' + CD' 

We now choose the blocks of g as follows 

With these choices, gBg' = diagll,,, l,,, -1,,, -Imm}, which completes the proof. 

Remark A2. 
via 

0 

When VI @I & is identified with the space of dim 6 x dim Vz real matrices, 

for some thoices of bases (e i}  and (fr], the orthogonal or symplectic structure B = B I  @ Bz 
is given by 

B E ,  t) = W ( b l t h ' ) ' )  

where bl and bZ are the matrices of BI and Bz, respectively. 

orthogonal-orthogonal case of proposition Al.  

Proposition A3. (Tensor product of Hermitian spaces.) Let (W1, H I ) ,  and (WZ, Hz) be 
two Hermitian spaces with signatures (PI, 41) and (p2, qz), respectively. Let (W, H )  be 
the pair W = W, @ Wz and H = H1 @ H2. Then, H is a Hermitian form on W of, signature 
( p ~ p ~  + q142, p1qZ + pZq1). Moreover, when W1 @I Wz is identified with the space of 
dim Wl x dim Wz-matrices after some definite choice of bases, the Hermitian structure H 
is given by 

Now, the proof of the following result is essentially the same as the proof of the 

H E ,  t) = W h < ~ A r )  

where h l ,  and hZ are the matrices of HI, and Hz, respectively, with respect to the chosen 
bases of W1, and Wz. 
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ProposirionA4. Let (Wl, HI), (WZ, Hz), and (W, H) be as in the proposition above. The 
real and imaginary parts of H define orthogonal and symplectic structures, respectively, on 
the underlying real space, (WI @ WZ)R, of Wl @ WZ, according to 

0 A Shchez-Vdenzuela and R E Zuazua-Vega 

Re H - Orthogonal of ( ~ ( P I P Z  + q l d r  ~ ( P I ~ Z  + pzq1))  

Im H H Symplectic on (real) dimension 2(dim Wl)(dm WZ). 

Proof. Let {et, e,,+,] and [f?, f,*] be orthonormal bases for W1 and Wz, respectively. 
Then, Iei @ 5,  eP,++ @ fP+, ei 8 f,+<, e,,+, 8 51 is an orthonormal basis of WI @ WZ, 
with respect to which the ma'uix h of the Hermitian form H has the block form 

Under the identification, 

C ( P Z + ~ I ) ( , + ~ ~ )  3 (XI + iyl, . . . , x4 + iy4) * (xI, . . . , x4, y, , . . . , y4) E R ~ ( P I + ~ ~ ) ( P ~ + ~ Z )  

(with XI, YI in RPrq', xz, yz in RP1ql, x3, y3 in RP1qr and x4, y4 in Rmql), the matrices of 
the real and imaginary parts of H are, respectively, given by 

0 

0 0 
-1,,,+,,9, 0 

0 1P,,!+,, 
0 0 

R e H =  

and 

0 
0 

0 0 1PW+,, 

0 1 P m + P m  0 

0 0 
I m H = (  -l,,,,+,, 0 0 

from which the assertion follows. 

References 

[l] DnEin R J 1938 On the characteristic mauices of covariant sysiems Phys. Rev. 54 1114 
121 Harish-Chandra 1946 The mrresnondence M e e n  the nanicle and wave as& of the meson and the ohoton .. 

P ~ C .  R. SOC. A 186 502 
131 Harish-Chandn 1947 On the aleebra of the meson mauices Pmc. Camb. Phil. Soc. 43 414 .. - 
[4] Howe R 1985 Dual pain in physics: harmonic oscillators, photons, electrons, and singldons AmpricM 

[5] Jacobson N 1968 Smeture and representations of Jordan algebras Americw Mathematical Society 

[q Kemmer N 1939 The panicle aspect of meson theory Pine. R. Soc. A 173 91 
VI Kemmer N 1943 The algebra of meson matrices Pmc. Camb. Phil. Soc. 39 189 
[81 Sanchez-Valenzuela 0 A and Sternberg S 1987 On rhe Automorphism G m v  of the Hermitian Superalgebrar 

[91 Sternberg S 1987 On charge conjugation C o v "  Math Phys. 109 645 

Mathematical Society, Lectures in Applied Mathematics 21 179 

Colloquium Publicotionr no 39 (Providence, RI: American Mathematical Society) 

(Lecture Notes in Mathematics 1251) (Berlin: Springer) p 1 


